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LEITER TO THE EDITOR 
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8 Department of Chemistry, University of Toronto, Toronto M5S IAl ,  Canada 
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Abstract. We present Monte Carlo and exact enumeration results for three- and four-arm 
stars on a variety of lattices. We estimate the exponents for the number of stars and the 
mean square end-to-end length of a branch, and compare these results with scaling and 
renormalisation group predictions. 

Recently there has been increased interest in studying the configurational and dynamic 
properties of star-branched polymers (Huber et a1 1984, von Meerwall 1984). This 
has been stimulated in part by the development of synthetic routes whereby well 
characterised stars of varying functionality can be produced (Roovers et aI 1983). 
Early theoretical studies considered the unperturbed chain, but the 6 point of these 
molecules has yet to be well defined experimentally. In modelling the stars with 
excluded volume two kinds of treatments have emerged. Daoud and Cotton (1982) 
(see also Birshtein and Zhulina 1984) have developed a scaling theory incorporating 
three concentration regimes: a close-packed core, surrounded by a region in which 
concentration effects screen out excluded volume and, finally, in the long-chain limit, 
a region where excluded-volume effects dominate. Miyake and Freed (1983) have 
produced a more rigorous treatment using chain conformation renormalisation group 
techniques (see also Vlahos and Kosmas 1984). Their picture differs from that of 
Daoud and Cotton, and they are able to make predictions concerning both metrical 
and statistical properties. 

Both treatments predict that the exponent characterising the large-n behaviour of 
the mean square radius of gyration, ( S h ( f ) ) ,  for a uniform f-arm star with N = nf 
monomers is independent o f f ;  and is equal to the corresponding exponent for the 
linear chain ( 2 ~ ) .  In addition Miyake and Freed (1983) obtain the following form for 
the mean square end-to-end length, ( R ? ( f ) ) ,  of a branch having n monomers 

(Rt(f))  - A(f)n2”(f) (1) 

where A ( f )  is an increasing function o f f  and v ( f )  = v, independent off: 

of configurations of a uniform $arm star decreases with increasing f as 
Miyake and Freed also predict that the critical exponent characterising the number 

r(f) = 1 +$&[l - f ( f - -  I ) ( f - 2 ) ] + O ( E 2 )  ( 2 )  
where E = 4 - d and d is the space dimension. 
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L470 Letter to the Editor 

In this letter we present Monte Carlo and  exact enumeration results for uniform 
stars weakly embeddable in a variety of lattices, and compare our data with the above 
predictions. Although some Monte Carlo work has already appeared on related systems 
(Mazur and McCrackin 1977, Kolinski and  Sikorski 1982) it was not analysed to test 
these results. 

We have enumerated exactly the numbers of stars having three and  four branches 
on the triangular, square, simple cubic, tetrahedral, body-centred cubic and  face-centred 
cubic lattices, for small n. Assuming that the number of stars with a total of N edges 
is given asymptotically by 

S N ( f ) -  B ( f ) N Y ' " - ' p U N  (3) 

we estimate ~ ( f )  from the ratios r,, = s ~ ~ / s , ~ , , - , ,  by extrapolating the sequence (see 
Gaunt and Guttmann 1974) 

m ( f )  = 1 + n[ ( r , / p ' )  - 11. (4) 

The growth constant p can be proved to be identical to that for a self-avoiding walk. 
A proof of this assertion will appear in a subsequent publication. 

Results for the triangular and square lattices are shown in figure I ,  together with 
;( Y, + y n - , )  for the square lattice, to reduce the effect of odd-even oscillations. In 
these calculations we have made use of unbiased estimates of p due to Watts (1975). 
The O( E )  estimates of Miyake and Freed, for f = 3 and 4, are shown by arrows. There 
is strong evidence that the sequences { y,,} for f= 3 and 4 converge to different limits, 
and that these limits are close to the O ( E )  predictions of Miyake and Freed. 

Analogous results for f = 3 in three dimensions are presented in  figure 2 .  Again, 
the sequences seem to be converging (despite rather erratic behaviour for the tetrahedral 
lattice) to a limit close to that ( y ( 3 )  = I )  predicted by Miyake and Freed. 
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Figure I .  Ratio estimates of r(f)  for the square (0 and 0) and triangular ( A )  lattices. 
The full (broken) lines are f o r f =  3(4) ,  respectively. The arrows indicate the O( E )  estimates 
of Miyake and Freed (1983). 



Letter to the Editor L47 1 

0 . 5 1  -1 

l l n  

Figure 2. Ratio estimates of y ( 3 )  for the tetrahedral (m), simple cubic (0), body-centred 
cubic (0) and face-centred cubic ( + )  lattices. The arrow indicates the O ( E )  estimate of 
Miyake and Freed (1983). 

In  addition, we have generated samples of configurations of uniform stars, with 
three and four arms, on the tetrahedral and simple cubic lattices using an inversely 
restricted Monte Carlo procedure (Rosenbluth and Rosenbluth 1955). The number of 
edges in each arm ranges from 50 to 80, and we have used sample sizes of between 
300 000 and 500 000. 

Defining W,(f) = s N ( f ) / p N ,  it follows from (3) that 

In W,/ln N = ( y - I ) + l n  B(f)/ln N+o(( ln  N ) - ' )  ( 5 )  

and figure 3 shows the Monte Carlo data for four-arm stars on the tetrahedral and 
simple cubic lattices. Both sets of data approach the same intercept, corresponding 
to y(4) = 0.9:::;. Similar results (not shown) for three-arm stars indicate that y(3) = 
1.1 L 0.05. These error bars reflect both the statistical uncertainty and the uncertainty 
due to possible errors in p. These values should be compared with the predictions of 
Miyake and Freed and of Vlahos and Kosmas of y(3) = 1 and y(4) =0.75. The 
qualitative result, that y ( f )  decreases with increasing f, is confirmed by our Monte 
Carlo and exact enumeration data. The numerical discrepancies could be due to 
uncertainties in our treatment arising from (i) additional uncertainties in estimates of 
p or (ii) insufficiently long arms, or could arise from neglect of terms of order E *  and 
higher in the renormalisation group treatments. 

We have calculated ( R z ( f ) )  exactly for small n and estimated this quantity for 
small and larger values of n using Monte Carlo methods. The agreement for small n 
is excellent, the discrepancy never being larger than 0.1%. We have assumed that ( I )  
describes the behaviour of ( R i ( f ) )  and have estimated v ( f )  from appropriate log-log 
plots. In three dimensions, it is clear that 4 3 )  and v(4) are both close to 0.6. If we 
assume that v ( f )  = 0.6 and estimate A(f) (see figure 4) we find that A(4) is larger than 
A(3), although both are lattice dependent. We estimate that A(4)/A(3) = 1.05 *0.01 
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Figure 4. Monte Carlo estimates of A ( f )  for f= 3 (A) and f= 4 (0) for the simple cubic 
lattice. 

for the simple cubic lattice, and 1.04*0.02 for the tetrahedral lattice. These results 
are consistent with the ratio A(4)/A(3) being universal (i.e. lattice independent), and 
compare well with Miyake and Freed's prediction (to first order in E )  that A(4)/A(3) = 
1 .OS6 in three dimensions. 

In summary, our results suggest (i)  that the configurational exponent for fibranched 
stars decreases asf increases, and ( i i )  that the mean square length of a branch increases 
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with$ This is in complett qualitative agreement with the results of Miyake and Freed. 
There are, however, some discrepancies between our numerical estimates and their 
O ( E )  result for the exponent y ( f ) .  We plan to investigate this further, and to extend 
our calculations to include the mean-square radius of gyration. This is of particular 
interest in that it should allow us to differentiate between the scaling and renormalisation 
group theories. 

This research was financially supported, in part, by NSERC of Canada and NATO 
(RG 85/0067). MKW is grateful to the SERC for the award of a research studentship. 
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